Write your own inheritance resolver

Table of contents

I 1 11 0o 1T i o 1O
2 Why you would need anew inheritance reSOIVEYooveeieeienieneese e
3 Extending the AbstractinheritanceResolverimpl Class...........ccocvvceeiie e,
3.1 Think of an iNNEritanCe SLralEQY........ccceiieieiie et ne
3.2 Implement "resolvel nheritances’ Method.............ccooveevee e
4 CoNfigUING DIMENSIONS.......ccoiiiiiierieriesie ettt e e see b be b srenneas

Write your own inheritance resolver

1. Introduction

Tiles definitions are stored in different Tiles definitions files. To avoid code repetition and
redundancy, each "higher level" Tiles definition file should inherit from a"lower level" file,
so that the "higher level" one inherits all the "lower level” definitions, eventually overriding
them. Here comes for help the "inheritance resolver”, that, starting from each file, loads all
"lower level" files and eventually overrides definitions, starting from the lowest level to the
current file.

The User Devi cel nheri t anceResol ver isanimplementation of this concept, that
gives priority to the user, then to the device. And only user roles and device types are taken
into consideration.

2. Why you would need a new inheritance resolver

The reasons for which you need a different inheritance resolver are tightly connected to those
that led you to choose a different decider, that is:

« You need some more customization parameters besides the user's role and the device. For
example, the locale, or the user's name.

« Theway the User Devi cel nherit anceResol ver resolvesinheritancesis not
appropriate for your needs, for example you will need to give priority to the device
instead of the user.

e Yousimply don't want any inheritance.

3. Extending the Abstractl nheritanceResolver Impl class

If you want to write your own decider, the most easy way is to extend the

com free2be. di nensions.til es.resol ver. Abstract | nheritanceResol verl npl
class. The other option is to implement the "InheritanceResolver” interface in the same

package, but the class above has a simple and useful implementation of common methods.

3.1. Think of an inheritance strategy

If you want to base your inheritance on decisions, the most effective way to resolve
inheritance isto build a"decision tree". In other words, organize all suitable decisionsin a
tree, and the rules to inherit Tiles definition are connected to the tree. See

User Devi cel nheri t anceResol ver sourcefor an example.

If inheritance in your case is not based on decisions, then you should invent something :-P

Page 2

Write your own inheritance resolver

3.2. Implement " resolvel nheritances’ method

The most important thing to do isimplementing ther esol vel nheri t ances method.
Follow the guidelines that you found out in the step before.

Y ou only have to know that deci si on2pat h contains, asaMap, a correspondence
between each decision and each corresponding Tiles definitions file. When you finished
resolving everything, indeci si on2sequence must be aMap where the keys are
decisions and the values are Lists each including strings, that are the path of Tiles definitions
files (those that are present asvaluesin deci si on2pat h. Again, you should see

User Devi cel nheri t anceResol ver source.

4. Configuring Dimensions

Now you have to configure Dimensions. Y ou have to modify the
di mensi ons-confi g. xm file, to use your own inheritance resolver.

<i nheritance-resol ver classNane="foo. bar. MWl nheritanceResol ver"/>

At the moment, you cannot set customized properties.

Page 3

	1 Introduction
	2 Why you would need a new inheritance resolver
	3 Extending the AbstractInheritanceResolverImpl class
	3.1 Think of an inheritance strategy
	3.2 Implement "resolveInheritances" method

	4 Configuring Dimensions

