
Dimensions Tutorial

Table of contents

1 Quickstart...2

1.1 Configuring Tiles...2

1.2 Decide your user-device matrix...2

1.3 Assigning Tiles configuration files... 3

1.4 Specifying user identification..3

1.5 Finding out default user role and device... 3

1.6 Configuring Dimensions... 3

1.7 Writing Tiles definitions files..5

2 Understanding UserDeviceDecider..6

3 Understanding UserDeviceInheritanceResolver.. 6

Copyright © 2002-2005 Free2Be, Aaron Roller, Antonio Petrelli All rights reserved.

1. Quickstart

Installing and using Dimensions with basic features is pretty simple. Follow these steps to
create a Dimensions-based application. Here we assume that you know how to create a
Struts+Tiles based application.

1.1. Configuring Tiles

First of all you have to configure Tiles for the use of Dimensions. Simply cut and paste this
piece of code instead of your inclusion of Tiles plug-in in struts-config.xml:

<plug-in className="org.apache.struts.tiles.TilesPlugin">
<set-property property="definitions-config"

value="/WEB-INF/dimensions-config.xml"/>
<set-property property="moduleAware" value="true"/>
<set-property property="definitions-parser-validate" value="false"/>
<set-property property="definitions-factory-class"
value="com.free2be.dimensions.tiles.ConfigurableFactorySet"/>

</plug-in>

1.2. Decide your user-device matrix

Now this is a design step. You have to think about your user roles and device types.

For instance, suppose that you are building an eCommerce site, and you have the following
user roles:

• Visitor, or the one who enters the site only to visit it.
• Customer, or the one who buys.
• The sales employee, i.e. the one who puts the prices on.

Now you have to identify all supported devices. For example:

• An HTML browser on a PC.
• An HTML browser on PDA.
• A WAP telephone, that supports WML.

The resulting matrix is a 3 x 3 table, maybe you wish only to cover some points in this table.
For example, the sales employee could use a PC or a PDA, but not a WAP phone. Obviously
this is up to you.

Suppose then that we have such a table.

* PC PDA Phone

Visitor X X

Dimensions Tutorial

Page 2
Copyright © 2002-2005 Free2Be, Aaron Roller, Antonio Petrelli All rights reserved.

Customer X X X

Employee X X

1.3. Assigning Tiles configuration files

After making the table above, you should make another table, where you assign a Tiles
configuration file to each user-device pair. For example:

* PC PDA Phone

Visitor tiles-defs.xml N/A tiles-defs_wml.xml

Customer tiles-defs_customer.xmltiles-defs_customer_html_pda.xmltiles-defs_customer_wml.xml

Employee tiles-defs_employee.xmltiles-defs_employee_html_pda.xml N/A

1.4. Specifying user identification

Now a question: how are you going to identify the user role in your application? It is really
common that you have a bean put in session scope that contains information about the user
(if it is logged in). And it is common that you have a property that identifies the role.
Dimensions supports using this property, but it must be a string. So, if you don't have a bean
in session scope that identifies the user, create it. If you have this bean but you don't have a
property to identify the user's role, create it, and it must be a string.

1.5. Finding out default user role and device

A very important step is to identify your default user role and your default device. In most
cases, the default user role is the one who does not need a login phase (in our example, the
Visitor), while usually the default device is a HTML PC browser.

1.6. Configuring Dimensions

Finally, you can configure Dimensions. Dimensions uses a concept called "decision": the
engine "decides" which is the most proper user-device pair that can be used by the user. You
have to write a decision for each supported user-device pair

But let's see the final configuration file, that in our example it is
dimensions-config.xml, we'll comment it below (we are assuming that you are going
to put the configuration files in /WEB-INF/config directory).

<?xml version="1.0" encoding="UTF-8"?>

Dimensions Tutorial

Page 3
Copyright © 2002-2005 Free2Be, Aaron Roller, Antonio Petrelli All rights reserved.

<dimensions-config>
<!-- Here we choose the "decider", i.e. the class that "decides" the

most
correct user-device pair. -->

<decider className="com.free2be.dimensions.decider.UserDeviceDecider">
<!-- The bean that identifies a user is "loginInfo", in scope

"session",
and the property that identifies the user's role is "role". -->

<set-property name="userBeanName" value="loginInfo" />
<set-property name="userBeanScope" value="session" />
<set-property name="userBeanRoleProperty" value="role" />

</decider>

<!-- This is the class that resolves inheritances between Tiles
definitions files -->

<inheritance-resolver
className="com.free2be.dimensions.tiles.inheritance.UserDeviceInheritanceResolver">

</inheritance-resolver>

<decisions>
<decision>

<!-- Default decision -->
<definitions-config path="/WEB-INF/config/tiles-defs.xml" />

</decision>
<decision>

<!-- Default user (visitor) with WAP phone. -->
<parameter name="device" value="wml" />
<definitions-config path="/WEB-INF/config/tiles-defs_wml.xml"

/>
</decision>
<decision>

<!-- Customer with default device (HTML PC) -->
<parameter name="userRole" value="customer" />
<definitions-config

path="/WEB-INF/config/tiles-defs_customer.xml" />
</decision>
<decision>

<!-- Customer on PDA -->
<parameter name="userRole" value="customer" />
<parameter name="device" value="html_pda" />
<definitions-config

path="/WEB-INF/config/tiles-defs_customer_html_pda.xml" />
</decision>
<decision>

<!-- Customer on WAP phone -->
<parameter name="userRole" value="customer" />
<parameter name="device" value="wml" />
<definitions-config

path="/WEB-INF/config/tiles-defs_customer_wml.xml" />
</decision>
<decision>

<!-- Employee with default device (HTML PC) -->
<parameter name="userRole" value="employee" />
<definitions-config

Dimensions Tutorial

Page 4
Copyright © 2002-2005 Free2Be, Aaron Roller, Antonio Petrelli All rights reserved.

path="/WEB-INF/config/tiles-defs_employee.xml" />
</decision>
<decision>

<!-- Employee on PDA -->
<parameter name="userRole" value="employee" />
<parameter name="device" value="html_pda" />
<definitions-config

path="/WEB-INF/config/tiles-defs_employee_html_pda.xml" />
</decision>

</decisions>
</dimensions-config>

The <decider> identifies the class that takes decision. In this case you don't have to
change it, anyway see "Deciders" page to customize the way you take decisions. In section
"Understanding UserDeviceDecider" we explain how it works.

This decider, analyzer the bean representing the user and the HTTP request, to identify the
user's role and the calling device. The caracteristics of this bean are specified by
<set-property> elements, where the properties mean:

• userBeanName: the name of the bean to use;
• userBeanScope: the scope in which the engine should search. It can be "application",

"session" or "request". If it is not specified, the bean is searched across all scopes.
• userBeanRoleProperty: the name of the property of the bean that specifies the user's

role (as a string).

The <inheritance-resolver> element specifies the class that is going to resolve
inheritances between Tiles definitions files. In this case you don't have to change it, anyway
see "Inheritance Resolvers" page to create your custom inheritance resolver.

A <decision> represents a decision. Each decision is characterized by parameters. In this
case, there can be two parameters:

• userRole: the user's role;
• device: a string representing the device. For string representations of devices, see the

section "Device string representations".

If a parameter in a decision is not specified, that it is intended the "default" parameter.

The <definitions-config> element inside a decision connects the decision itself to a
Tiles definitions file. So that, each time that decision is taken, the specified Tiles definitions
file is used.

1.7. Writing Tiles definitions files

Well, this section is up to you. I think a tutorial is useful, but an example is better, so
download the simple example and test it.

Dimensions Tutorial

Page 5
Copyright © 2002-2005 Free2Be, Aaron Roller, Antonio Petrelli All rights reserved.

2. Understanding UserDeviceDecider

The "decider" is a class that analyzes something (for example the HTTP request or some
bean values) and takes a decision, that contains a certain amount of parameter values.

The "UserDeviceDecider" is an implementation of such decider. The steps that it follows are:

• Find out the bean that represents the user and check which is the user's role, and if it
can't, the "default" role is assumed.

• Analyze the header of the HTTP request and identify the most probable client device.
• Start from this "high" decision and descend it, to find out the best decision among the

ones that are defined in dimensions-config.xml file.

But, how does UserDeviceDecider "descend" the decision stairs?

1. If the user is not the default one, go on. Otherwise, jump to point 3.
2. Starting from the most detailed string representation of the device, see if a decision with

matching "userRole" and "device" parameters. If none is found, degrade the detail level
of the device step by step. If it arrives at default device and there's still no decision
matching, degrade to default user and go on. Otherwise, end the algorithm and take the
decision.

3. Trying with a default user, the same way as it is done at point 2, until it arrives to default
decision.

As you can see, the user's role has the first priority in taking the decision, simply because it is
critical that a user sees the correct interface. So it degrades to default user only if all the
device possibilities, even the default device, are tried.

3. Understanding UserDeviceInheritanceResolver

An "inheritance resolver" in Dimensions is a class that resolves inheritances between Tiles
definitions described in different Tiles configuration files. It is used to avoid code repetitions,
i.e. avoiding rewriting Tiles definitions in multiple files.

The class UserDeviceInheritanceResolver resolves inheritances giving priority to
user's role, than it evaluates the device type. In other terms:

1. Starting from a Tiles definitions file, with a non-default user's role and a non-default
device, to resolve inheritances it "degrades" the detail of the device, until it arrives to the
default device, then it degrades the user's role, thus arriving to the default Tiles
definitions file.

2. With the default user's role, it degrades the device, until it arrives to the default device,
thus arriving to the default Tiles definitions file.

Dimensions Tutorial

Page 6
Copyright © 2002-2005 Free2Be, Aaron Roller, Antonio Petrelli All rights reserved.

	1 Quickstart
	1.1 Configuring Tiles
	1.2 Decide your user-device matrix
	1.3 Assigning Tiles configuration files
	1.4 Specifying user identification
	1.5 Finding out default user role and device
	1.6 Configuring Dimensions
	1.7 Writing Tiles definitions files

	2 Understanding UserDeviceDecider
	3 Understanding UserDeviceInheritanceResolver

