
Write your own inheritance resolver

Table of contents

1 Introduction..2

2 Why you would need a new inheritance resolver.. 2

3 Extending the AbstractInheritanceResolverImpl class.. 2

3.1 Think of an inheritance strategy.. 2

3.2 Implement "resolveInheritances" method... 3

4 Configuring Dimensions..3

Copyright © 2002-2005 Free2Be, Aaron Roller, Antonio Petrelli All rights reserved.

1. Introduction

Tiles definitions are stored in different Tiles definitions files. To avoid code repetition and
redundancy, each "higher level" Tiles definition file should inherit from a "lower level" file,
so that the "higher level" one inherits all the "lower level" definitions, eventually overriding
them. Here comes for help the "inheritance resolver", that, starting from each file, loads all
"lower level" files and eventually overrides definitions, starting from the lowest level to the
current file.

The UserDeviceInheritanceResolver is an implementation of this concept, that
gives priority to the user, then to the device. And only user roles and device types are taken
into consideration.

2. Why you would need a new inheritance resolver

The reasons for which you need a different inheritance resolver are tightly connected to those
that led you to choose a different decider, that is:

• You need some more customization parameters besides the user's role and the device. For
example, the locale, or the user's name.

• The way the UserDeviceInheritanceResolver resolves inheritances is not
appropriate for your needs, for example you will need to give priority to the device
instead of the user.

• You simply don't want any inheritance.

3. Extending the AbstractInheritanceResolverImpl class

If you want to write your own decider, the most easy way is to extend the
com.free2be.dimensions.tiles.resolver.AbstractInheritanceResolverImpl
class. The other option is to implement the "InheritanceResolver" interface in the same
package, but the class above has a simple and useful implementation of common methods.

3.1. Think of an inheritance strategy

If you want to base your inheritance on decisions, the most effective way to resolve
inheritance is to build a "decision tree". In other words, organize all suitable decisions in a
tree, and the rules to inherit Tiles definition are connected to the tree. See
UserDeviceInheritanceResolver source for an example.

If inheritance in your case is not based on decisions, then you should invent something :-P

Write your own inheritance resolver

Page 2
Copyright © 2002-2005 Free2Be, Aaron Roller, Antonio Petrelli All rights reserved.

3.2. Implement "resolveInheritances" method

The most important thing to do is implementing the resolveInheritances method.
Follow the guidelines that you found out in the step before.

You only have to know that decision2path contains, as a Map, a correspondence
between each decision and each corresponding Tiles definitions file. When you finished
resolving everything, in decision2sequence must be a Map where the keys are
decisions and the values are Lists each including strings, that are the path of Tiles definitions
files (those that are present as values in decision2path. Again, you should see
UserDeviceInheritanceResolver source.

4. Configuring Dimensions

Now you have to configure Dimensions. You have to modify the
dimensions-config.xml file, to use your own inheritance resolver.

<inheritance-resolver className="foo.bar.MyInheritanceResolver"/>

At the moment, you cannot set customized properties.

Write your own inheritance resolver

Page 3
Copyright © 2002-2005 Free2Be, Aaron Roller, Antonio Petrelli All rights reserved.

	1 Introduction
	2 Why you would need a new inheritance resolver
	3 Extending the AbstractInheritanceResolverImpl class
	3.1 Think of an inheritance strategy
	3.2 Implement "resolveInheritances" method

	4 Configuring Dimensions

